SILVERCORP INTERSECTS 7.6 METRES TRUE WIDTH GRADING 705 GRAMS PER TONNE SILVER AND 1.51% LEAD
FROM VEIN LM7W AT THE LMW MINE

VANCOUVER, British Columbia - October 14, 2021 - Silvercorp Metals Inc. ("Silvercorp" or the "Company") (TSX: SVM) (NYSE American: SVM) is pleased to report thick and high-grade intercepts from its 2021 exploration program at the LMW mine. Extensive exploration drilling and tunneling are ongoing at the LMW mine, and all other mines in the Ying Mining District, Henan Province, China.

From May 1 to September 30, 2021, 23,908 metres ("m") from a total of 166 diamond drill holes, including 152 underground holes and 14 surface holes, were completed at the LMW mine. Assay results for 102 holes have been received, with 70 holes intercepting mineralization. Currently there are 12 rigs drilling at the LMW mine.

The strategy of the drilling program is threefold: 1) drill above or beneath the stopes that were previously mined but stopped due to poor understanding of the geology, such as veins LM7 and LM7W where much thicker pods have been discovered by infill drilling; 2) drill for high-grade silver-lead-zinc veins at the northwest and east sides of the resource area with previous limited drilling without follow up such as W1, W2, W6, and LM41E series veins where high grade intercepts were discovered and can quickly be mined; and 3) drill low angle gold veins such as LM50, copper-gold-silver veins such as LM26, and gold-silver-copper veins such as LM22.

Drilling Intersected High-Grade Silver-Lead-Zinc Veins at the Northwest and East Sides of the Resource Area

At the northwest side of the resource area, drilling intersected high-grade silver-lead-zinc veins W1, W2, W6, and W6E1 with true widths up to 4.67 m, at an elevation above 850 m. The drilling program discovered new splay and parallel veins, including W1E, W2E, W2W, W6W, and W18E. Vein W1 has been defined approximately 200 m along strike and 100 m down-dip, and is still open laterally along strike and at depth.

At the east side of the resource area, between the LMW mine and the LME mine, drilling intersected high-grade silver-lead-zinc vein LM41E, at an elevation above 760 m. Drilling also intersected additional splay and parallel silver-lead-zinc veins LM41E1 and LM41E1Wa, which are also high-grade vein structures with true widths up to 7.03 m.



Drill Above or Beneath the Stopes That Were Previously Mined

Most holes in this period targeted blocks of known silver-lead-zinc veins in the production areas that were previously missed due to limited drilling or tunneling, changes in the strikes and dips, and/or pinch-swelling of the pay-zones in the veins. The high-grade intercepts are mainly associated with the northeast-striking LM7 series and LM12 series, and the northwest-striking LM8 series and LM19 series. Drilling discovered additional splay and parallel vein structures LM12_2a and T1, the latter may be a southwest extension of the major vein structure T1 at the TLP mine to the northeast of the LMW mine.

Highlights of the high-grade silver-lead-zinc mineralization at the LMW mine:

  • Hole ZKX05X023 intersected an 8.87 m interval (7.60 m true width) of vein LM7W grading 705 grams per tonne ("g/t") silver ("Ag"), 1.51% lead ("Pb"), 0.08% zinc ("Zn"), 0.06 g/t gold ("Au"), and 0.05% copper ("Cu") from 24.73 m depth, at an elevation of 790 m;

  • Hole ZKX1137 intersected a 5.16 m interval (4.80 m true width) of vein LM41E1 grading 984 g/t Ag, 1.19% Pb, 0.29% Zn, 0.08 g/t Au, and 1.15% Cu from 46.4 m depth, at an elevation of 793 m;

  • Hole ZKX0451 intersected a 3.11 m interval (1.72 m true width) of vein W1 grading 1,468 g/t Ag, 4.90% Pb, 0.97% Zn, 0.03 g/t Au, and 0.35% Cu from 137.88 m depth, at an elevation of 981 m;

  • Hole ZKX05X037 intersected a 5.40 m interval (5.06 m true width) of vein LM8W grading 703 g/t Ag, 1.52% Pb, 0.14% Zn, 0.08 g/t Au, and 0.42% Cu from 24.97 m depth, at an elevation of 795 m;

  • Hole ZKX0789 intersected a 2.96 m interval (2.21 m true width) of vein LM7W grading 1,646 g/t Ag, 2.42% Pb, 0.27% Zn, 0.45 g/t Au, and 0.17% Cu from 15.96 m depth, at an elevation of 786 m;

  • Drift Tunnel PD918-W1-918-4SYM exposed mineralization 15 m long and 0.85 m wide (true width), grading 1,561 g/t Ag, 4.31% Pb, 0.62% Zn, 0.02 g/t Au, and 0.45% Cu of vein W1 at an elevation of 918 m (Table 3); and

  • Drift Tunnel PD918-W1-918-4NYM exposed mineralization 30 m long and 0.61 m wide (true width), grading 1,222 g/t Ag, 3.74% Pb, 0.98% Zn, 0.15 g/t Au, and 0.34% Cu of vein W1 at an elevation of 918 m (Table 3).

Drill Low Angle Gold or Copper-Gold-Silver Veins

The drilling continued intersecting and extending the low angle gold vein LM50. An additional 17 holes in this period targeted LM50 and defined a block 800 m E-W by 500 m N-S, with hole density at the central 300 m by 300 m portion being approximately 25 m by 25 m. Another 15 holes targeted the low angle gold vein structure LM26. The assay results of 13 holes were returned with 10 holes intersecting gold mineralization.

2



Highlights of the intercepts from the low angle gold veins at the LMW mine:

  • Hole ZKX0796 intersected a 3.47 m interval (2.74 m true width) of vein LM50 grading 11.82 g/t Au, 27 g/t Ag, 0.29% Pb, 0.22% Zn, and 0.01% Cu from 37.23 m depth, at an elevation of 786 m;

  • Hole ZKX0788 intersected a 2.47 m interval (1.99 m true width) of vein LM50 grading 1.26 g/t Au, 1,193 g/t Ag, 0.40% Pb, 0.04% Zn, and 0.16% Cu from 14.46 m depth, at an elevation of 789 m;

  • Hole ZKX0787 intersected a 1.51 m interval (1.27 m true width) of vein LM26 grading 5.86 g/t Au, 2 g/t Ag, 0.01% Pb, 0.02% Zn, and 0.01% Cu from 80.04 m depth, at an elevation of 749 m;

  • Hole ZKX0153 intersected a 2.12 m interval (1.23 m true width) of vein LM26 grading 4.62 g/t Au, 19 g/t Ag, and 0.75% Cu from 63.11 m depth, at an elevation of 646 m;

  • Hole ZKX0172 intersected a 1.19 m interval (1.01 m true width) of vein LM26 grading 2.81 g/t Au, 132 g/t Ag, and 4.05% Cu from 60.95 m depth, at an elevation of 643 m;

  • Drift Tunnel PD924-LM22-834-5YMSS exposed mineralization 20 m long and 0.38 m thick (true thickness), grading 97 g/t Ag, 26.89 g/t Au and 12.93% Cu of vein LM22 at an elevation of 834 m (Table 3); and

  • Drift Tunnel PD924-LM22-834-5YMSD exposed mineralization 10 m long and 0.39 m thick (true thickness), grading 54 g/t Ag, 38.95 g/t Au and 5.63% Cu of vein LM22 at an elevation of 834 m (Table 3).

Table 1: Selected intercepts from the drilling program at the LMW mine

Hold ID From
(m)
To
(m)
Elevation
(m)
Interval
(m)
True
Width
(m)
Ag
(g/t)
Pb
(%)
Zn
(%)
Au
(g/t)
Cu
(%)
Vein Ore Type
ZKX0153 63.11 65.23 646 2.12 1.23 19 0.08 0.01 4.62 0.75 LM26 Cu-Ag-Au
ZKX0172 60.95 62.14 643 1.19 1.01 132 0.03 0.01 2.81 4.05 LM26 Cu-Ag-Au
ZKX0173 1.35 2.33 697 0.98 0.49 196 6.26 1.45 0.03 0.39 LM19W1 Ag-Pb-Zn
ZKX0173 69.70 70.43 653 0.73 0.21 217 0.83 0.15 1.87 0.79 LM26 Cu-Ag-Au
ZKX0346 66.05 66.55 887 0.50 0.46 322 2.45 0.13 0.03 0.04 LM12_1 Ag-Pb-Zn
ZKX0363 116.29 118.78 513 2.49 2.43 92 2.05 0.15 0.05 0.04 LM7 Ag-Pb-Zn
ZKX0390 18.68 19.52 680 0.84 0.63 57 3.89 0.14 0.05 0.04 LM19W Ag-Pb-Zn
ZKX0390 60.86 61.63 640 0.77 0.58 37 0.01 0.03 0.92 5.43 LM26 Cu-Ag-Au
ZKX0391 60.94 61.51 640 0.57 0.48 9 0.56 0.07 3.15 2.36 LM26 Cu-Ag-Au
ZKX0392 9.23 10.25 689 1.02 0.42 214 0.20 0.33 0.01 0.03 LM19W Ag-Pb-Zn
ZKX0393 16.81 17.64 684 0.83 0.56 25 5.36 0.02 0.01 0.01 LM21 Ag-Pb-Zn
ZKX0422 311.17 312.39 833 1.22 0.18 348 1.79 0.11 0.03 0.12 LM17 Ag-Pb-Zn
ZKX0433 119.75 120.26 918 0.51 0.41 1 0.00 0.01 2.82 0.01 W2 Au
ZKX0433 144.41 145.51 914 1.10 1.07 172 7.31 0.13 0.01 0.03 W1 Ag-Pb-Zn
ZKX0434 114.94 116.86 903 1.92 1.81 639 3.30 0.55 0.04 0.06 W2 Ag-Pb-Zn
ZKX0434 146.36 148.91 894 2.55 2.42 1,065 2.98 0.26 0.02 0.28 W1 Ag-Pb-Zn
ZKX0435 158.30 159.28 848 0.98 0.78 238 0.51 0.45 0.03 0.02 W1 Ag-Pb-Zn
ZKX0435 225.40 226.60 810 1.20 2.40 46 5.96 0.13 0.02 0.02 W6E1 Ag-Pb-Zn

3



ZKX0442 136.75 139.86 908 3.11 2.88 543 4.21 1.19 0.03 0.11 W2 Ag-Pb-Zn
ZKX0442 147.76 150.20 906 2.44 2.26 695 2.96 0.17 0.03 0.07 W1 Ag-Pb-Zn
ZKX0447 154.85 156.05 946 1.20 0.79 4,034 4.67 0.73 0.05 0.46 W1 Ag-Pb-Zn
ZKX0448 91.40 95.32 1,001 3.92 2.72 183 1.03 0.20 0.05 0.14 W2 Ag-Pb-Zn
ZKX0451 61.86 62.83 1,028 0.97 0.54 376 5.78 0.13 0.03 0.04 W2 Ag-Pb-Zn
ZKX0451 121.68 126.31 991 4.63 2.57 300 0.62 0.08 0.03 0.05 W1E [1] Ag-Pb-Zn
ZKX0451 137.88 140.99 981 3.11 1.72 1,468 4.90 0.97 0.03 0.35 W1 Ag-Pb-Zn
incl 138.72 139.90 981 1.18 0.65 3,572 12.55 2.40 0.03 0.88 W1 Ag-Pb-Zn
ZKX0452 28.85 29.82 934 0.97 0.95 995 3.06 0.19 0.05 0.23 W18E [1] Ag-Pb-Zn
ZKX0452 136.42 141.17 925 4.75 4.67 123 0.66 0.16 0.05 0.03 W1 Ag-Pb-Zn
ZKX0452 146.67 147.70 924 1.03 1.01 195 0.14 0.09 0.05 0.02 W6W [1] Ag-Pb-Zn
ZKX0452 163.80 164.40 922 0.60 0.59 309 1.04 0.10 0.05 0.02 W1E Ag-Pb-Zn
ZKX0544 26.31 27.08 884 0.77 0.74 176 8.77 0.07 0.14 0.03 LM12_2a [1] Ag-Pb-Zn
ZKX0578 82.30 83.44 548 1.14 1.13 230 0.72 0.10 0.33 0.21 LM7 Ag-Pb-Zn
ZKX0581 68.26 70.77 576 2.51 1.98 200 0.22 0.12 0.09 0.09 LM7W1 Ag-Pb-Zn
ZKX05X019 16.90 17.45 794 0.55 0.54 158 1.18 0.04 0.03 0.02 LM7W Ag-Pb-Zn
ZKX05X019 39.38 44.59 783 5.21 5.14 221 1.49 0.34 0.03 0.57 LM7 Ag-Pb-Zn
ZKX05X020 23.03 24.48 784 1.45 1.40 455 1.09 0.02 0.03 0.07 LM7W Ag-Pb-Zn
ZKX05X020 35.97 46.44 774 10.47 5.79 520 0.72 0.27 0.03 0.28 LM7 Ag-Pb-Zn
ZKX05X021 37.66 43.76 767 6.10 6.06 213 0.85 0.11 0.05 0.28 LM7 Ag-Pb-Zn
incl 38.73 39.81 766 1.08 0.91 1,075 2.04 0.17 0.19 1.20 LM7 Ag-Pb-Zn
ZKX05X023 24.73 33.60 790 8.87 7.60 705 1.51 0.08 0.06 0.05 LM7W Ag-Pb-Zn
incl 27.81 29.25 790 1.44 1.23 3,721 1.52 0.12 0.05 0.09 LM7W Ag-Pb-Zn
ZKX05X024 21.14 24.79 785 3.65 3.21 135 0.74 0.05 0.06 0.03 LM7W Ag-Pb-Zn
ZKX05X024 41.66 44.38 769 2.72 2.38 692 1.38 0.18 0.10 0.66 LM7 Ag-Pb-Zn
incl 41.66 42.17 769 0.51 0.45 1,737 2.53 0.10 0.05 0.10 LM7 Ag-Pb-Zn
ZKX05X025 16.57 19.68 785 3.11 2.45 207 0.62 0.07 0.98 0.03 LM50 Au
ZKX05X025 20.68 21.78 782 1.10 0.87 179 0.68 0.04 0.03 0.03 LM7W Ag-Pb-Zn
ZKX05X037 24.97 30.37 795 5.40 5.06 703 1.52 0.14 0.08 0.42 LM8W Ag-Pb-Zn
incl 28.15 29.23 794 1.08 1.01 2,721 4.74 0.38 0.20 1.65 LM8W Ag-Pb-Zn
ZKX05X037 46.09 52.24 790 6.15 5.75 185 0.77 0.10 0.03 0.10 LM7 Ag-Pb-Zn
ZKX0628 34.81 35.62 934 0.81 0.80 422 1.44 4.71 0.03 0.13 W18E Ag-Pb-Zn
ZKX0628 150.69 151.90 926 1.21 1.21 600 1.25 0.10 0.03 0.02 W1 Ag-Pb-Zn
ZKX0629 65.51 67.72 926 2.21 1.90 743 1.64 1.35 0.05 0.00 W2W [1] Ag-Pb-Zn
incl 65.51 66.38 926 0.87 0.75 1,175 4.10 3.38 0.05 0.29 W2W Ag-Pb-Zn
ZKX0629 151.08 153.33 913 2.25 1.94 181 5.94 0.12 0.02 0.00 W1 Ag-Pb-Zn
ZKX0742 157.08 159.59 1,063 2.51 2.50 544 1.00 0.41 0.05 0.15 LM41E Ag-Pb-Zn
ZKX0748 169.79 171.81 992 2.02 1.67 1,103 4.11 2.56 0.03 0.25 LM41E Ag-Pb-Zn
incl 169.79 170.51 992 0.72 0.59 2,901 10.69 6.91 0.03 0.61 LM41E Ag-Pb-Zn
ZKX0754 85.20 88.81 555 3.61 3.16 120 1.15 0.07 0.10 0.88 LM7 Ag-Pb-Zn
ZKX0766 14.66 15.17 799 0.51 0.49 458 0.29 0.23 0.03 0.06 LM41E Ag-Pb-Zn
ZKX0771 4.65 6.01 801 1.36 1.33 453 0.52 0.19 0.01 0.04 LM41E Ag-Pb-Zn
ZKX0771 11.69 12.61 799 0.92 0.90 389 1.55 0.46 0.02 0.06 LM17W Ag-Pb-Zn
ZKX0771 41.17 42.66 791 1.49 1.46 93 1.81 0.12 0.02 0.03 LM41E1 [1] Ag-Pb-Zn
ZKX0772 77.32 77.92 750 0.60 0.57 857 6.54 3.32 0.05 0.54 LM17W Ag-Pb-Zn
ZKX0787 40.84 45.87 775 5.03 4.22 173 0.56 0.05 0.05 0.03 LM7 Ag-Pb-Zn
ZKX0787 80.04 81.55 749 1.51 1.27 2 0.01 0.02 5.86 0.01 LM26 Au
ZKX0788 14.46 16.93 789 2.47 1.99 1,193 0.40 0.04 1.26 0.16 LM50 Au
incl 15.8 16.93 788 1.13 0.91 1,963 0.03 0.03 2.65 0.29 LM50 Au
ZKX0789 15.96 18.92 786 2.96 2.21 1,646 2.42 0.27 0.45 0.17 LM7W Ag-Pb-Zn
incl 15.96 16.56 787 0.60 0.45 3,024 0.04 0.03 1.31 0.17 LM7W Ag-Pb-Zn
and 17.87 18.37 785 0.50 0.37 2,724 12.53 1.34 0.60 0.60 LM7W Ag-Pb-Zn
ZKX0789 54.29 62.20 748 7.91 5.91 122 1.69 0.17 0.44 0.07 LM7 Ag-Pb-Zn
ZKX0793 40.82 42.43 715 1.61 1.39 611 4.65 0.05 0.20 1.11 LM7 Ag-Pb-Zn
ZKX0796 1.53 2.11 801 0.58 0.46 511 0.58 0.03 0.05 0.07 N/A [2] Ag-Pb-Zn
ZKX0796 7.9 9.48 798 1.58 1.24 994 4.05 0.12 0.18 0.39 LM8W Ag-Pb-Zn
incl 7.9 8.57 798 0.67 0.53 2,155 9.48 0.27 0.37 0.92 LM8W Ag-Pb-Zn
ZKX0796 31.07 31.65 789 0.58 0.46 271 0.64 0.27 0.17 0.13 LM7W Ag-Pb-Zn
ZKX0796 37.23 40.7 786 3.47 2.74 27 0.29 0.22 11.82 0.01 LM50 Au
incl 38.99 40.7 785 1.71 1.35 44 0.56 0.42 23.24 0.02 LM50 Au

4



ZKX0982 6.95 7.75 799 0.80 0.60 391 1.35 0.19 0.03 0.05 LM41E Ag-Pb-Zn
ZKX0982 56.77 57.81 765 1.04 0.79 1,829 8.81 0.71 0.11 0.34 LM41E1 Ag-Pb-Zn
ZKX0983 43.22 51.51 792 8.29 7.03 347 3.86 0.20 0.06 0.13 LM41E1 Ag-Pb-Zn
incl 48.48 49.29 791 0.81 0.69 2,955 35.65 1.07 0.29 0.66 LM41E1 Ag-Pb-Zn
ZKX0986 85.68 86.82 863 1.14 3.02 91 3.95 0.76 0.07 0.01 LM7W Ag-Pb-Zn
ZKX0987 44.43 52.46 734 8.03 3.57 649 1.96 0.32 0.19 0.48 LM7 Ag-Pb-Zn
incl 47.73 49.30 734 1.57 0.70 2,000 5.07 0.85 0.53 0.37 LM7 Ag-Pb-Zn
ZKX09X004 50.69 51.95 770 1.26 1.22 56 5.59 0.08 0.03 0.01 LM41E1Wa [1] Ag-Pb-Zn
ZKX09X004 57.42 60.39 766 2.97 2.89 391 3.18 0.15 0.03 0.17 LM41E1 Ag-Pb-Zn
incl 59.36 60.39 765 1.03 1.00 980 8.00 0.31 0.03 0.39 LM41E1 Ag-Pb-Zn
ZKX09X005 46.00 46.56 794 0.56 0.40 323 4.49 0.13 0.03 0.08 LM41E1 Ag-Pb-Zn
ZKX1117 46.78 48.00 884 1.22 1.15 207 1.92 0.59 0.03 0.01 LM12E Ag-Pb-Zn
ZKX1117 115.92 117.35 816 1.43 1.35 298 0.68 0.04 0.02 0.05 T1 Ag-Pb-Zn
ZKX1119 9.98 11.04 921 1.06 0.36 119 6.31 0.13 0.01 0.33 LM8_3 Ag-Pb-Zn
ZKX1137 37.61 39.36 795 1.75 1.63 295 2.50 0.20 0.04 0.09 LM41E1Wa Ag-Pb-Zn
ZKX1137 46.40 51.56 793 5.16 4.80 984 1.19 0.29 0.08 1.15 LM41E1 Ag-Pb-Zn
incl 48.45 49.12 793 0.67 0.62 1,827 7.34 0.48 0.08 0.50 LM41E1 Ag-Pb-Zn
and 50.66 51.56 792 0.90 0.84 4,050 0.49 1.22 0.31 6.17 LM41E1 Ag-Pb-Zn
ZKX1142 145.65 146.85 706 1.20 0.98 38 7.01 0.07 0.05 0.01 LM17W Ag-Pb-Zn
ZKX11806 88.93 89.48 517 0.55 0.97 46 11.63 0.16 0.02 0.21 LM19W2 Ag-Pb-Zn
ZKX11810 235.90 237.43 717 1.53 1.23 148 1.63 0.03 0.05 0.57 LM19W1 Ag-Pb-Zn
ZKX11811 103.94 105.90 812 1.96 1.54 344 2.79 0.39 0.04 0.20 LM11E1 Ag-Pb-Zn
ZKX1337 151.03 153.86 799 2.83 0.99 3 0.10 0.03 5.88 0.01 LM50 Au
incl 152.73 153.86 798 1.13 0.40 7 0.17 0.06 13.80 0.01 LM50 Au
ZKX14209 132.81 134.52 900 1.71 1.46 236 1.81 0.58 0.12 0.04 W6W Ag-Pb-Zn
ZKX14209 137.15 139.32 899 2.17 1.86 139 3.11 0.18 0.05 0.02 W2 Ag-Pb-Zn
ZKX14209 152.55 153.35 895 0.80 0.69 181 4.94 3.54 0.05 0.02 W2E [1] Ag-Pb-Zn
ZKX14209 179.51 180.67 888 1.16 0.99 513 2.96 0.31 0.16 0.08 W6 Ag-Pb-Zn

[1] New veins
[2] New veins without name

Tunneling Programs at the LMW Mine

A total of 1,753 m of exploration tunnels have been developed at the LMW mine during this period. The exploration tunneling, comprised of drifting, cross-cutting and raising, was driven along and across major mineralized vein structures to upgrade the drill-defined mineral resources, and to test for new parallel and splay structures (Table 2).

At the elevation of 834 m, three decline tunnels exposed low angle gold vein LM22 with ore lengths of 20 m, 18 m and 10 m, and gold grades of 26.89 g/t, 20.80 g/t and 38.95 g/t, respectively. A four-hole drilling program has been initiated to test the continuity of LM22 at the 834 m elevation.

Table 2: Summary of the tunneling program at the LMW mine

Major Target Veins Elevation
(m)
Total
Tunneling
(m)
Channel
Samples
Collected
Drift
Incuded
(m)
Total Mineralization Exposed by Drifts[1]
Length
(m)
True
Width
(m)
Ag
(g/t)
Pb
(%)
Zn
(%)
Au
(g/t)
Cu
(%)
W1, W2, W18, W6W, LM22, LM8_2, LM17, LM41E, LM50, LM20E, LM12_1, LM7, LM20, LM11, LM14 525-918 1,753 1,358 738 385 0.71 519 2.71 0.43 2.72 0.70

[1] Mineralization is defined by silver equivalent value (AgEq) greater than or equal to 145 g/t at the LMW mine (Formula used for AgEq calculation: AgEq = Ag g/t + 64.66 * Au g/t + 34.07 * Pb% ).

5



Table 3: Selected mineralized zones exposed by drift tunneling at the LMW mine

Tunnel ID Vein Elevation
(m)
Length
(m)
Ore
Length
(m)
True
Width
(m)
Ag
(g/t)
Pb
(%)
Zn
(%)
Au
(g/t)
Cu
(%)
Ore Type
XPDS-LM17-625-28SYM LM17 625 206 35 0.87 720 4.31 0.49 0.02 0.47 Ag-Pb-Zn
XPDS-LM17-575-26SYM LM17 575 148 77 0.89 316 4.30 0.77 0.02 0.15 Ag-Pb-Zn
XPDS-LM17-525-24SYM LM17 525 260 10 0.80 635 1.19 0.27 0.02 0.47 Ag-Pb-Zn
PD924-LM22-834-3YMXS LM22 834 20 18 0.53 23 0.08 0.01 20.80 0.69 Au-Cu
PD924-LM22-834-5YMSD LM22 834 10 10 0.39 54 0.04 0.03 38.95 5.63 Au-Cu
PD924-LM22-834-5YMSS LM22 834 26 20 0.38 97 0.06 0.09 26.89 12.93 Au-Cu
XPDN-LM41E-700-9NYM LM41E 700 76 35 0.64 823 4.45 0.25 0.02 0.16 Ag-Pb-Zn
XPDN-LM50-800-7NYM LM50 800 32 20 1.15 131 1.40 0.26 0.02 0.05 Au
XPDN-LM50-800-7SYMCM LM50 800 160 20 0.73 4 0.05 0.03 4.02 0.01 Au
PD918-W1-918-4NYM W1 918 30 30 0.61 1,222 3.74 0.98 0.15 0.34 Ag-Pb-Zn
PD918-W1-918-4SYM W1 918 65 15 0.85 1,561 4.31 0.62 0.02 0.45 Ag-Pb-Zn
PD918-W1-880-8NYM W1 880 150 45 0.66 336 2.38 0.18 0.02 0.03 Ag-Pb-Zn

Quality Control

Drill cores are NQ size. Drill core samples, limited by apparent mineralization contacts or shear/alteration contacts, were split into halves by saw cutting. The half cores are stored in the Company's core shacks for future reference and checks, and the other half core samples are shipped in securely sealed bags to the Chengde Huakan 514 Geology and Minerals Test and Research Institute in Chengde, Hebei Province, China, 226 km northeast of Beijing, the Zhengzhou Nonferrous Exploration Institute Lab in Zhengzhou, Henan Province, China, and SGS in Tianjin, China. All three labs are ISO9000 certified analytical labs. For analysis, the sample is dried and crushed to minus 1mm and then split into a 200-300 g subsample which is further pulverized to minus 200 mesh. Two subsamples are prepared from the pulverized sample. One is digested with aqua regia for gold analysis with atomic absorption spectroscopy (AAS), and the other is digested with two-acids for analysis of silver, lead, zinc and copper with AAS.

Channel samples are collected along sample lines perpendicular to the mineralized vein structure in exploration tunnels. Spacing between sampling lines is typically 5 m along strike. Both the mineralized vein and the altered wall rocks are cut by continuous chisel chipping. Sample length ranges from 0.2 m to more than 1 m, depending on the width of the mineralized vein and the mineralization type. Channel samples are prepared and assayed with AAS at Silvercorp's mine laboratory (Ying Lab) located at the mill complex in Luoning County, Henan Province, China. The Ying lab is officially accredited by the Quality and Technology Monitoring Bureau of Henan Province and is qualified to provide analytical services. The channel samples are dried, crushed and pulverized. A 200 g sample of minus 160 mesh is prepared for assay. A duplicate sample of minus 1mm is made and kept in the laboratory archives. Gold is analysed by fire assay with AAS finish, while silver, lead, zinc and copper are assayed by two-acid digestion with AAS finish.

A routine quality assurance/quality control (QA/QC) procedure is adopted to monitor the analytical quality at each lab. Certified reference materials (CRMs), pulp duplicates and blanks are inserted into each batch of lab samples. QA/QC data at the lab are attached to the assay certificates for each batch of samples.

6



The Company maintains its own comprehensive QA/QC program to ensure best practices in sample preparation and analysis of the exploration samples. Project geologists regularly insert CRM, field duplicates and blanks to each batch of 30 core samples to monitor the sample preparation and analysis procedures at the labs. The analytical quality of the labs is further evaluated with external checks by sending approximately 3-5% of the pulp samples to higher level labs to check for lab bias. Data from both the Company's and the labs' QA/QC programs are reviewed on a timely basis by project geologists.

Guoliang Ma, P. Geo., Manager of Exploration and Resource of the Company, is the Qualified Person for Silvercorp under NI 43-101 and has reviewed and given consent to the technical information contained in this news release.

About Silvercorp

Silvercorp is a profitable Canadian mining company producing silver, lead and zinc metals in concentrates from mines in China. The Company's goal is to continuously create healthy returns to shareholders through efficient management, organic growth and the acquisition of profitable projects. Silvercorp balances profitability, social and environmental relationships, employees' wellbeing, and sustainable development. For more information, please visit our website at www.silvercorp.ca.

For further information

Lon Shaver
Vice President
Silvercorp Metals Inc.

Phone: (604) 669-9397
Toll Free: 1 (888) 224-1881
Email: investor@silvercorp.ca
Website: www.silvercorpmetals.com

CAUTIONARY DISCLAIMER - FORWARD LOOKING STATEMENTS

Certain of the statements and information in this press release constitute "forward-looking statements" within the meaning of the United States Private Securities Litigation Reform Act of 1995 and "forward-looking information" within the meaning of applicable Canadian provincial securities laws. Any statements or information that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "expects", "is expected", "anticipates", "believes", "plans", "projects", "estimates", "assumes", "intends", "strategies", "targets", "goals", "forecasts", "objectives", "budgets", "schedules", "potential" or variations thereof or stating that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved, or the negative of any of these terms and similar expressions) are not statements of historical fact and may be forward-looking statements or information. Forward-looking statements or information relate to, among other things: the price of silver and other metals; the accuracy of mineral resource and mineral reserve estimates at the Company's material properties; the sufficiency of the Company's capital to finance the Company's operations; estimates of the Company's revenues and capital expenditures; estimated production from the Company's mines in the Ying Mining District; timing of receipt of permits and regulatory approvals; availability of funds from production to finance the Company's operations; and access to and availability of funding for future construction, use of proceeds from any financing and development of the Company's properties.

7



Forward-looking statements or information are subject to a variety of known and unknown risks, uncertainties and other factors that could cause actual events or results to differ from those reflected in the forward-looking statements or information, including, without limitation, social and economic impacts of COVID-19; risks relating to: fluctuating commodity prices; calculation of resources, reserves and mineralization and precious and base metal recovery; interpretations and assumptions of mineral resource and mineral reserve estimates; exploration and development programs; feasibility and engineering reports; permits and licenses; title to properties; property interests; joint venture partners; acquisition of commercially mineable mineral rights; financing; recent market events and conditions; economic factors affecting the Company; timing, estimated amount, capital and operating expenditures and economic returns of future production; integration of future acquisitions into the Company's existing operations; competition; operations and political conditions; regulatory environment in China and Canada; environmental risks; legislative and regulatory initiatives addressing global climate change or other environmental concerns; foreign exchange rate fluctuations; insurance; risks and hazards of mining operations; key personnel; conflicts of interest; dependence on management; internal control over financial reporting as per the requirements of the Sarbanes-Oxley Act; and bringing actions and enforcing judgments under U.S. securities laws.

This list is not exhaustive of the factors that may affect any of the Company's forward-looking statements or information. Forward-looking statements or information are statements about the future and are inherently uncertain, and actual achievements of the Company or other future events or conditions may differ materially from those reflected in the forward-looking statements or information due to a variety of risks, uncertainties and other factors, including, without limitation, those referred to in the Company's Annual Information Form for the year ended March 31, 2021 under the heading "Risk Factors". Although the Company has attempted to identify important factors that could cause actual results to differ materially, there may be other factors that cause results not to be as anticipated, estimated, described or intended. Accordingly, readers should not place undue reliance on forward-looking statements or information.

The Company's forward-looking statements and information are based on the assumptions, beliefs, expectations and opinions of management as of the date of this press release, and other than as required by applicable securities laws, the Company does not assume any obligation to update forward-looking statements and information if circumstances or management's assumptions, beliefs, expectations or opinions should change, or changes in any other events affecting such statements or information. For the reasons set forth above, investors should not place undue reliance on forward-looking statements and information.

CAUTIONARY NOTE TO US INVESTORS

The disclosure in this news release and referred to herein was prepared in accordance with NI 43-101 which differs significantly from the requirements of the U.S. Securities and Exchange Commission (the "SEC"). The terms "proven mineral reserve", "probable mineral reserve" and "mineral reserves" used in this news release are in reference to the mining terms defined in the Canadian Institute of Mining, Metallurgy and Petroleum Standards (the "CIM Definition Standards"), which definitions have been adopted by NI 43-101. Accordingly, information contained in this news release providing descriptions of our mineral deposits in accordance with NI 43-101 may not be comparable to similar information made public by other U.S. companies subject to the United States federal securities laws and the rules and regulations thereunder.

Investors are cautioned not to assume that any part or all of mineral resources will ever be converted into reserves. Pursuant to CIM Definition Standards, "Inferred mineral resources" are that part of a mineral resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Such geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An inferred mineral resource has a lower level of confidence than that applying to an indicated mineral resource and must not be converted to a mineral reserve. However, it is reasonably expected that the majority of inferred mineral resources could be upgraded to indicated mineral resources with continued exploration. Under Canadian rules, estimates of inferred mineral resources may not form the basis of feasibility or pre-feasibility studies, except in rare cases. Investors are cautioned not to assume that all or any part of an inferred mineral resource is economically or legally mineable. Disclosure of "contained ounces" in a resource is permitted disclosure under Canadian regulations; however, the SEC normally only permits issuers to report mineralization that does not constitute "reserves" by SEC standards as in place tonnage and grade without reference to unit measures.

Canadian standards, including the CIM Definition Standards and NI 43-101, differ significantly from standards in the SEC Industry Guide 7. Effective February 25, 2019, the SEC adopted new mining disclosure rules under subpart 1300 of Regulation S-K of the United States Securities Act of 1933, as amended (the "SEC Modernization Rules"), with compliance required for the first fiscal year beginning on or after January 1, 2021. The SEC Modernization Rules

8



replace the historical property disclosure requirements included in SEC Industry Guide 7. As a result of the adoption of the SEC Modernization Rules, the SEC now recognizes estimates of "Measured Mineral Resources", "Indicated Mineral Resources" and "Inferred Mineral Resources". In addition, the SEC has amended its definitions of "Proven Mineral Reserves" and "Probable Mineral Reserves" to be substantially similar to corresponding definitions under the CIM Definition Standards. During the period leading up to the compliance date of the SEC Modernization Rules, information regarding mineral resources or reserves contained or referenced in this news release may not be comparable to similar information made public by companies that report according to U.S. standards. While the SEC Modernization Rules are purported to be "substantially similar" to the CIM Definition Standards, readers are cautioned that there are differences between the SEC Modernization Rules and the CIM Definitions Standards. Accordingly, there is no assurance any mineral reserves or mineral resources that the Company may report as "proven mineral reserves", "probable mineral reserves", "measured mineral resources", "indicated mineral resources" and "inferred mineral resources" under NI 43-101 would be the same had the Company prepared the reserve or resource estimates under the standards adopted under the SEC Modernization Rules.

9


Attachments

  • Original document
  • Permalink

Disclaimer

Silvercorp Metals Inc. published this content on 15 October 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 15 October 2021 10:41:20 UTC.